
Warm-up p. 700, 1. Name the 4 layers of Earth from center outward: Inner core, outer core, mantle, crust

p.701, 2. In South Africa gold mines at depths of 2 miles the temperature is _____. 50°C or 120°F

p. 701, 3. What helps maintaining the Earth high internal temperature?
 Radioactive isotopes

Warm-up p. 702, 1. Around 1915, a German scientist named _ _____ noticed how continents fit together. Alfred Wegener

p.702, 2. The supercontinent that fits together is called : _ Pangaea

p. 702, 3. Using ______ evidence showed that the supercontinent was together around ______ years ago.
Fossil, 200 million

Objectives

- Identify Earth's different geologic layers.
- Explain how the presence of magnetic bands on the ocean floor supports the theory of plate tectonics.
- Describe the movement of Earth's lithosphere using the theory of plate tectonics.
- Identify the three types of plate boundaries and the principal structures that form at each of these boundaries.

Section 1 Earth's Interior and Plate Tectonics

Plate Tectonics

- Around 1915, German scientist Alfred Wegener proposed the idea that the continents were once united as a supercontinent and then drifted apart.
 - He pieced the continents together like a puzzle and called the supercontinent they formed Pangaea.
 - Wegener found identical fossils on widely separate continents, which supported his idea.

Chapter menu

Copyright © by Holt, Rinehart and Winston. All rights reserved

Resources

Enc

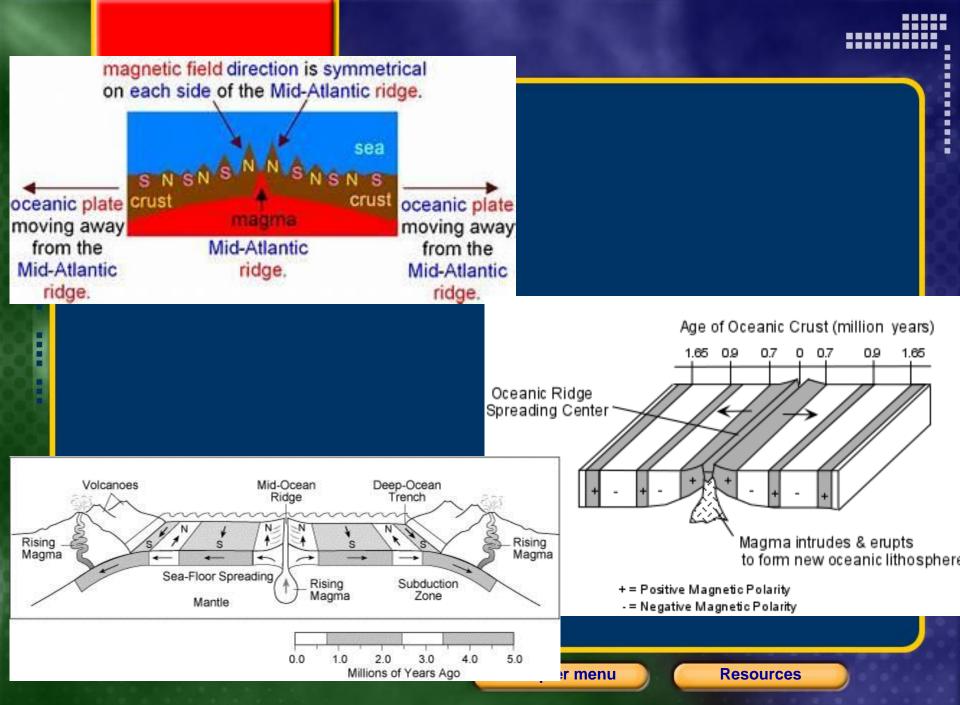
Section 1 Earth's Interior and Plate Tectonics

Plate Tectonics, *continued*

- Evidence for Wegener's ideas came later.
 - Wegener's theory of continental drift was ignored until structures discovered on the ocean floor provided evidence for a mechanism for the movement of continents.
 - Symmetrical bands on either side of a mid-ocean ridge indicate that the two sides of the ridge were moving away from each other and new ocean floor was rising up between them.

Chapter menu

Enc


Plate Tectonics, *continued*

- Alignment of oceanic rocks supports the theory of moving plates.
 - Iron in molten rock aligns itself with Earth's magnetic field as it cools.
 - The Earth's magnetic field reverses polarity about every 200,000 years
 - The process is recorded as magnetic bands in rock, based on the age of the rock.
 - Symmetrical bands on either side of the Mid Atlantic Ridge suggest that the crust was moving away from the ridge.

Chapter menu

Resources

End

Copyright © by Holt, Rinehart and Winston. All rights reserved.

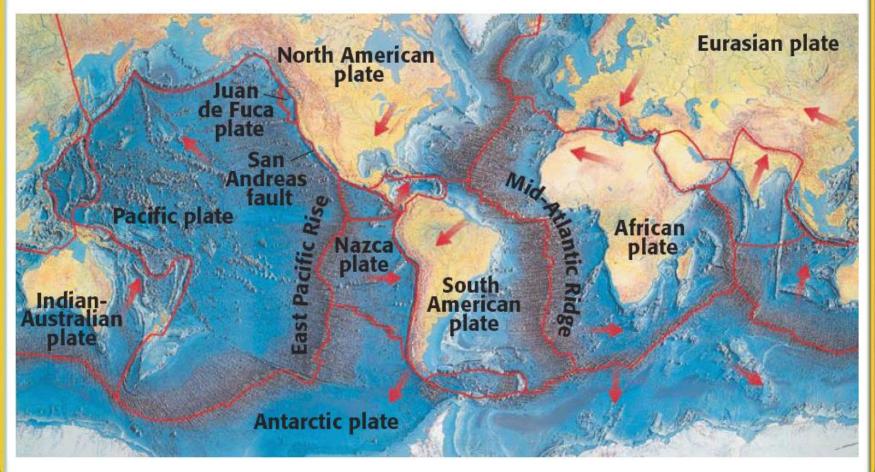
Section 1 Earth's Interior and Plate Tectonics

Plate Tectonics, continued

- Earth has plates that move over the mantle.
 - The crust and upper portion of the mantle are divided into about seven large pieces called tectonic plates.
- Lithosphere the solid, outer layer of Earth, that consists of the crust and the rigid upper mantle

Section 1 Earth's Interior and Plate Tectonics

Plate Tectonics, *continued*


 Plate tectonics the theory that explains how the outer parts of Earth change through time, and that explains the relationships between continental drift, sea-floor spreading, seismic activity, and volcanic activity

Section 1 Earth's Interior and **Plate Tectonics**

Tectonic Plates

Section 1 Earth's Interior and Plate Tectonics

Plate Tectonics, *continued*

- It is unknown exactly why tectonic plates move.
 - One hypothesis suggests that plate movement results from convection currents in the asthenosphere, the hot, fluid portion of the mantle.
 - Another hypothesis suggests that plate movement results from the force of gravity acting on the plates.

Cool down

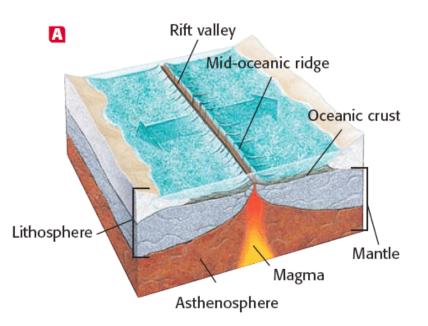
1. Alfred Wegner was from what country? Germany

2. Name two evidences that help prove or support – Plate Tectonics:
Fossil evidence, magnetic allignment of rocks in ocean crust

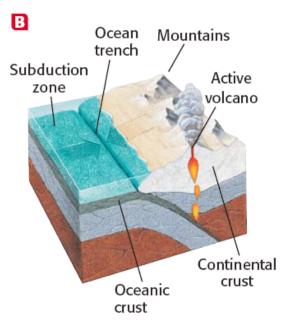
Section 1 Earth's Interior and Plate Tectonics

Plate Boundaries and Forces

- Mid-ocean ridges result from divergent boundaries.
 The border between two plates is called a boundary.
- Divergent boundary a place where two plates are moving apart
- New rock forms between divergent boundaries.
- Magma liquid rock produced under Earth's surface



Enc


Section 1 Earth's Interior and Plate Tectonics

0

Divergent and Convergent Boundaries

A Tectonic plates move apart at divergent boundaries, forming rift valleys and mountain systems. When divergent boundaries occur in the oceanic crust they form a mid-oceanic ridge.

B Ocean trenches, volcanoes, and mountains form near the boundary where oceanic and continental plates collide.

Chapter menu

Resources

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Section 1 Earth's Interior and Plate Tectonics

Plate Boundaries, continued

- Oceanic plates dive beneath continental plates at convergent boundaries.
 - Plates slide over each other at a convergent boundary.
- Subduction the process by which one lithospheric plate moves beneath another as a result of tectonic forces
- The area where one plate slides over another is called a subduction zone. Subduction zones produce ocean trenches, mountains, and volcanoes.

Section 1 Earth's Interior and Plate Tectonics

Plate Boundaries, *continued*

- Subduction of ocean crust generates volcanoes.
 - Chains of volcanoes form on the upper plate in a subduction zone.
 - These volcanoes can form far inland from their associated oceanic trench.

Section 1 Earth's Interior and Plate Tectonics

Plate Boundaries, *continued*

- Colliding tectonic plates create mountains.
 - When two plates collide, mountains are formed at the boundary of the collision.
 - The Himalayas formed during the collision between the continental tectonic plate containing India and the Eurasian continental plate.

Section 1 Earth's Interior and Plate Tectonics

Plate Boundaries, *continued*

- Transform fault boundaries can crack Earth.
 - Plate movement can cause breaks in the lithosphere.
- Fault a crack in Earth created when rocks on either side of a break move
 - Plate movement at transform fault boundaries is one cause of earthquakes.

