Pascal's Principle

After you study each sample problem and solution, work out the practice problems on a separate sheet of paper. Write your answers in the spaces provided.

Problem

A dentist's chair makes use of Pascal's principle to move patients up and down. Together, the chair and a patient exert a downward force of 2269 N. The chair is attached to a large piston with an area of 1221 cm2. To move the chair, a pump applies force to a small piston with an area of 88.12 cm2. What force must be exerted on the small piston to lift the chair?

Solution

Step 1: List the given and unknown values.

Given:

- $F_2 = 2269$ N
- $A_1 = 88.12$ cm2
- $A_2 = 1221$ cm2

Unknown:

- F_1

Step 2: Write the equations for Pascal's principle and pressure, force, and area.

\[p_1 = p_2 \]

\[\text{pressure} = \frac{\text{force}}{\text{area}} \]

Step 3: Substitute force and area into the first equation, and rearrange for the desired value.

\[\frac{F_1}{A_1} = \frac{F_2}{A_2} \]

\[F_1 = \frac{(F_2)(A_1)}{A_2} \]

Step 4: Insert the known values into the equation, and solve.

\[F_1 = \frac{(2269 \text{ N})(88.12 \text{ cm}^2)}{1221 \text{ cm}^2} \]

\[F_1 = 163.8 \text{ N} \]
Math Skills continued

Practice

1. A hydraulic lift office chair has its seat attached to a piston with an area of 11.2 cm2. The chair is raised by exerting force on another piston, with an area of 4.12 cm2. If a person sitting on the chair exerts a downward force of 219 N, what force needs to be exerted on the small piston to lift the seat?

2. In changing a tire, a hydraulic jack lifts 7468 N on its large piston, which has an area of 28.27 cm2. How much force must be exerted on the small piston if it has an area of 1.325 cm2?

3. An engine shop uses a lift to raise a 1784 N engine. The lift has a large piston with an area of 76.32 cm2. To raise the lift, force is exerted on a small piston with an area of 12.56 cm2. What force must be exerted to raise the lift?

Problem

An engineering student wants to build her own hydraulic pump to lift a 1815 N crate. The pump will have two pistons connected via a fluid chamber. The student calculates that she will be able to exert 442 N of force on the small piston, which will have an area of 50.2 cm2. What area must the large piston be to exert the desired force?

Solution

Step 1: List the given and unknown values.

<table>
<thead>
<tr>
<th>Given</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>442 N</td>
</tr>
<tr>
<td>A_1</td>
<td>50.2 cm2</td>
</tr>
<tr>
<td>F_2</td>
<td>1815 N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
</tr>
</tbody>
</table>

Step 2: Write the equations for Pascal’s principle and pressure, force, and area.

$p_1 = p_2$

$P = \frac{F}{A}$

Step 3: Substitute force and area into the first equation, and rearrange for the desired value.

$p_1 = p_2$

$F_1 = F_2$

$A_1 = A_2$

$A_2 = \frac{F_2(A_1)}{F_1}$
Math Skills continued

Step 4: Insert the known values into the equation, and solve.

\[A_2 = \frac{(1815 \text{ N})(50.2 \text{ cm}^2)}{442 \text{ N}} \]

\[A_2 = 206 \text{ cm}^2 \]

Practice

4. In a newly designed car with a hydraulic braking system, a force of 85 N is applied to one of the master cylinders, which has an area of 8.1 cm². The master cylinder is connected to one brake piston, which exerts a force of 296 N. What is the area of the brake piston?

5. A mechanic uses a hydraulic car jack to lift the front end of a car to change the oil. The jack she uses exerts 8915 N of force from the larger piston. To pump the jack, she exerts 444 N of force on the small piston, which has an area of 3.14 cm². What is the area of the large piston?

6. A student in the lunchroom blows into his straw with a force of 0.26 N. The column of air pushing the liquid in the glass has an area of 0.21 cm². If the liquid in the glass pushes upward with a force of 79 N, what is the area of the liquid at the surface of the glass?

Problem

The motor on a construction grade hydraulic shovel exerts \(3.11 \times 10^7\) Pa of pressure on a fluid tank. The fluid tank is connected to a piston that has an area of 153 cm². How much force does the piston exert?

Solution

Step 1: List the given and unknown values.

Given: \(p_1 = 3.11 \times 10^7\) Pa

\(A_2 = 153 \text{ cm}^2\)

Unknown: \(F_2\)

Step 2: Write the equations for Pascal's principle and pressure, force, and area.

\[p_1 = p_2 \]

\[\text{pressure} = \frac{\text{force}}{\text{area}} \]
Step 3: Substitute force and area into the first equation, and rearrange for the desired value.

\[P_1 = \frac{p_2}{F_2} \]
\[p_1 = \frac{F_2}{A_2} \]
\[F_2 = (p_1)(A_2) \]

Step 4: Insert the known values into the equation, and solve.

\[F_2 = (3.11 \times 10^7 \text{ Pa})(153 \text{ cm}^2) \]
\[F_2 = \left(\frac{3.11 \times 10^7 \text{ N}}{\text{m}^2}\right)(1.53 \times 10^{-2} \text{ m}^2) \]
\[F_2 = 4.76 \times 10^5 \text{ N} \]

Practice

7. A small crane has a motor that exerts $2.41 \times 10^7 \text{ Pa}$ of pressure on a fluid chamber. The chamber is connected by a fluid line to a piston on the crane arm. If the piston has an area of 168 cm², how much force does the piston exert?

8. A bicycle pump uses Pascal's law to operate. The air in the hose acts as a fluid and transfers force and pressure from the piston to the tire. If a pump has a piston with an area of 7.1 cm², how much force must be exerted on it to create a pressure of $8.2 \times 10^5 \text{ Pa}$?

9. A small, backyard log splitter has an engine that applies $1.723 \times 10^7 \text{ Pa}$ of pressure to a fluid tank. The tank is connected to piston with an area of 81.07 cm². How much force can the piston exert?

Mixed Practice

10. A force of 38.7 N is applied to the master cylinder of a hydraulic brake system. The cylinder has an area of 7.61 cm². The force from the master cylinder is transferred, by brake fluid, to two brake cylinders that have a total area of 49.1 cm². How much total force is exerted by the brake cylinders?

11. A factory lift is used to raise a load of 2225 N on a piston that has an area of 706.8 cm². How much pressure does the lift's engine need to exert on the hydraulic fluid to lift the required load?